Study Guide - The Quadratic Formula (2024)

Learning Outcomes

  • Write a quadratic equation in standard form and identify the values of[latex]a[/latex],[latex]b[/latex], and [latex]c[/latex] in astandard form quadratic equation.
  • Use the Quadratic Formula to find all real solutions of a quadratic equation
You can solve any quadratic equation by completing the square—rewriting part of the equation as a perfect square trinomial. If you complete the square on the generic equation [latex]ax^{2}+bx+c=0[/latex]and then solve for [latex]x[/latex], you find that [latex]x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}[/latex]. This equation is known as the Quadratic Formula.

Study Guide - The Quadratic Formula (1) Quadratic formula

We can derive the quadratic formula by completing the square. First,assume that the leading coefficient is positive; if it is negative, we can multiply the equation by [latex]-1[/latex] and obtain a positive a. Given [latex]a{x}^{2}+bx+c=0[/latex], [latex]a\ne 0[/latex], we will complete the square as follows:
  1. First, move the constant term to the right side of the equal sign:

    [latex]a{x}^{2}+bx=-c[/latex]

  2. As we want the leading coefficient to equal 1, divide through by a:

    [latex]{x}^{2}+\frac{b}{a}x=-\frac{c}{a}[/latex]

  3. Then, find [latex]\frac{1}{2}[/latex] of the middle term, and add [latex]{\left(\frac{1}{2}\cdot\frac{b}{a}\right)}^{2}=\frac{{b}^{2}}{4{a}^{2}}[/latex] to both sides of the equal sign:

    [latex]{x}^{2}+\frac{b}{a}x+\frac{{b}^{2}}{4{a}^{2}}=\frac{{b}^{2}}{4{a}^{2}}-\frac{c}{a}[/latex]

  4. Next, write the left side as a perfect square. Find the common denominator of the right side and write it as a single fraction:

    [latex]{\left(x+\frac{b}{2a}\right)}^{2}=\frac{{b}^{2}-4ac}{4{a}^{2}}[/latex]

  5. Now, use the square root property, which gives

    [latex]\begin{array}{l}x+\frac{b}{2a}=\pm \sqrt{\frac{{b}^{2}-4ac}{4{a}^{2}}}\hfill \\ x+\frac{b}{2a}=\frac{\pm \sqrt{{b}^{2}-4ac}}{2a}\hfill \end{array}[/latex]

  6. Finally, add [latex]-\frac{b}{2a}[/latex] to both sides of the equation and combine the terms on the right side. Thus,

    [latex]x=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}[/latex]

This formula is very helpful for solving quadratic equations that are difficult or impossible to factor, and using it can be faster than completing the square. The Quadratic Formula can be used to solve any quadratic equation of the form [latex]ax^{2}+bx+c=0[/latex].

Writing a Quadratic Equation in Standard Form

Remember that the form [latex]ax^{2}+bx+c=0[/latex] is called standard form of a quadratic equation. Before solving a quadratic equation using the Quadratic Formula, it isvital that you be sure the equation is in this form. If you do not, you might use the wrong values for a, b, or c, and then the formula will give incorrect solutions.The following examples show how to ensure that your quadratic equation is in standard form and then correctly identify the values you will be using for a, b, and c in the Quadratic Formula.

Example

Rewrite the equation [latex]3x+2x^{2}+4=5[/latex]in standard form and identify a, b, and c.

Answer: First be sure that the right side of the equation is 0. In this case, all you need to do is subtract [latex]5[/latex] from both sides.

[latex]\begin{array}{c}3x+2x^{2}+4=5\\3x+2x^{2}+4–5=5–5\end{array}[/latex]

Simplify, and write the terms with the exponent on the variable in descending order.

[latex]\begin{array}{r}3x+2x^{2}-1=0\\2x^{2}+3x-1=0\end{array}[/latex]

Now that the equation is in standard form, you can read the values of a, b, and c from the coefficients and constant. Note that since the constant 1 is subtracted, c must be negative.

[latex]\begin{array}{l}2x^{2}\,\,\,+\,\,\,3x\,\,\,-\,\,\,1\,\,\,=\,\,\,0\\\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\\\,ax^{2}\,\,\,\,\,\,\,\,\,\,bx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\\\\,\,a=2,\,\,b=3,\,\,c=-1\end{array}[/latex]

Answer

[latex-display]2x^{2}+3x–1=0;a=2,b=3,c=−1[/latex-display]

Example

Rewrite the equation [latex]2(x+3)^{2}–5x=6[/latex]in standard form and identify a, b, and c.

Answer: First be sure that the right side of the equation is [latex]0[/latex].

[latex]\begin{array}{c}2\left(x+3\right)^{2}–5x=6\\2(x+3)^{2}–5x–6=6–6\end{array}[/latex]

Expand the squared binomial, then simplify by combining like terms.Be sure to write the terms with the exponent on the variable in descending order.

[latex]\begin{array}{r}2\left(x^{2}+6x+9\right)-5x-6=0\\2x^{2}+12x+18–5x–6=0\\2x^{2}+12x–5x+18–6=0\\2x^{2}+7x+12=0\end{array}[/latex]

Now that the equation is in standard form, you can read the values of a, b, and c from the coefficients and constant.

[latex]\begin{array}{l}2x^{2}\,\,\,+\,\,\,7x\,\,\,+\,\,\,12\,\,\,=\,\,\,0\\\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\\\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\\\\,\,\,\,\,\,a=2,\,\,b=7,\,\,c=7\end{array}[/latex]

Answer

[latex-display]2x^{2}+7x+12=0;\,\,a=2,b=7,c=12[/latex-display]

Try It

[ohm_question]91600[/ohm_question]

Solving a Quadratic Equation using the Quadratic Formula

The Quadratic Formula will work with any quadratic equation, but only if the equation is in standard form, [latex]ax^{2}+bx+c=0[/latex]. To use it, follow these steps.
  1. Put the equation in standard form first.
  2. Identify the coefficients, a, b, and c. Be sure to include negative signs if the bx or c terms are subtracted.
  3. Carefully substitute the values noted in step[latex]2[/latex] into the equation. To avoid needless errors, use parentheses around each number input into the formula.
  4. Simplify as much as possible.
  5. Use the [latex]\pm[/latex] in front of the radical to separate the solution into two values: one in which the square root is added and one in which it is subtracted.
  6. Simplify both values to get the possible solutions.
That is a lot of steps. Let us try using the Quadratic Formula to solve a relatively simple equation first; then you will go back and solve it again using another factoring method.

Example

Use the Quadratic Formula to solve the equation [latex]x^{2}+4x=5[/latex].

Answer:First write the equation in standard form.

[latex]\begin{array}{r}x^{2}+4x=5\,\,\,\\x^{2}+4x-5=0\,\,\,\\\\a=1, b=4, c=-5\end{array}[/latex]

Note that the subtraction sign means the constant c is negative.

[latex] \begin{array}{r}{{x}^{2}}\,\,\,+\,\,\,4x\,\,\,-\,\,\,5\,\,\,=\,\,\,0\\\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\a{{x}^{2}}\,\,\,+\,\,\,bx\,\,\,+\,\,\,c\,\,\,=\,\,\,0\end{array}[/latex]

Substitute the values into the Quadratic Formula.[latex] x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}[/latex]

[latex] \begin{array}{l}\\x=\frac{-4\pm \sqrt{{{(4)}^{2}}-4(1)(-5)}}{2(1)}\end{array}[/latex]

Simplify, being careful to get the signs correct.

[latex]x=\frac{-4\pm\sqrt{16+20}}{2}[/latex]

Simplify some more.

[latex] x=\frac{-4\pm \sqrt{36}}{2}[/latex]

Simplify the radical: [latex] \sqrt{36}=6[/latex].

[latex] x=\frac{-4\pm 6}{2}[/latex]

Separate and simplify to find the solutions to the quadratic equation. Note that in one, 6 is added and in the other,[latex]6[/latex] is subtracted.

[latex]\begin{array}{c}x=\frac{-4+6}{2}=\frac{2}{2}=1\\\\\text{or}\\\\x=\frac{-4-6}{2}=\frac{-10}{2}=-5\end{array}[/latex]

The solutions are [latex]x=1\,\,\,\text{or}\,\,\,-5[/latex].

You can check these solutions by substituting [latex]1[/latex] and [latex]−5[/latex] into the original equation.
[latex]\begin{array}{r}x=1\\x^{2}+4x=5\\\left(1\right)^{2}+4\left(1\right)=5\\1+4=5\\5=5\end{array}[/latex][latex]\begin{array}{r}x=-5\\x^{2}+4x=5\,\,\,\,\,\\\left(-5\right)^{2}+4\left(-5\right)=5\,\,\,\,\,\\25-20=5\,\,\,\,\,\\5=5\,\,\,\,\,\end{array}[/latex]
You get two true statements, so you know that both solutions work: [latex]x=1[/latex] or [latex]-5[/latex]. You have solved the equation successfully using the Quadratic Formula!

Try it

[ohm_question]4015[/ohm_question]

Sometimes, it may be easier to solve an equation using conventional factoring methods like finding number pairs that sum to one number (in this example, [latex]4[/latex]) and that produce a specific product (in this example [latex]−5[/latex]) when multiplied. The power of the Quadratic Formula is that it can be used to solve any quadratic equation, even those where finding number combinations will not work.In our next two video examples, we will see, first, a quadratic equation with two real, rational solutions and, second, a quadratic equation that has irrational solutions and that could not have been solved using factoring.https://youtu.be/xtwO-n8lRPwIn the next video example, we show that the quadratic formula is useful when a quadratic equation has two irrational solutions that could not have been obtained by factoring.https://youtu.be/tF0muV86dr0Most of the quadratic equations you have looked at have two solutions, like the one above. The following example is a little different.

Example

Use the Quadratic Formula to solve the equation [latex]x^{2}-2x=6x-16[/latex].

Answer:Subtract [latex]6[/latex]x from each side and add[latex]16[/latex] to both sides to put the equation in standard form.

[latex]\begin{array}{l}x^{2}-2x=6x-16\\x^{2}-2x-6x+16=0\\x^{2}-8x+16=0\end{array}[/latex]

Identify the coefficients a, b, and c. [latex]x^{2}=1x^{2}[/latex], so [latex]a=1[/latex]. Since [latex]8x[/latex]is subtracted, b is negative.[latex]a=1,b=-8,c=16[/latex]

[latex] \begin{array}{r}{{x}^{2}}\,\,\,-\,\,\,8x\,\,\,+\,\,\,16\,\,\,=\,\,\,0\\\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\downarrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\a{{x}^{2}}\,\,\,+\,\,\,bx\,\,\,+\,\,\,\,c\,\,\,\,=\,\,\,0\end{array}[/latex]

Substitute the values into the Quadratic Formula.

[latex]\begin{array}{l}x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\\\\x=\frac{-(-8)\pm \sqrt{{{(-8)}^{2}}-4(1)(16)}}{2(1)}\end{array}[/latex]

Simplify.

[latex] x=\frac{8\pm \sqrt{64-64}}{2}[/latex]

Since the square root of[latex]0[/latex] is[latex]0[/latex], and both adding and subtracting[latex]0[/latex] give the same result, there is only one possible value.

[latex] x=\frac{8\pm \sqrt{0}}{2}=\frac{8}{2}=4[/latex]

The answer is [latex]x=4[/latex].

Again, check using the original equation.

[latex]\begin{array}{r}x^{2}-2x=6x-16\,\,\,\,\,\\\left(4\right)^{2}-2\left(4\right)=6\left(4\right)-16\\16-8=24-16\,\,\,\,\,\,\\8=8\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array}[/latex]

In the following video we show an example of using the quadratic formula to solve a quadraticequation that has one repeated solution.https://youtu.be/OXwwzWcxFgEIn the next example, we will show that some quadratic equations do not have real solutions. As we simplify with the quadratic formula, we may end up with a negative number under a square root, which, as we know, is not defined for real numbers.

Example

Use the Quadratic Formula to solve the equation [latex]x^2+x=-x-3[/latex]

Answer:Add [latex]x[/latex] to both sides and add 3 to both sides to get the quadratic equation in standard form.

[latex]\begin{array}{l}x^{2}+x=-x-3\\x^{2}+2x+3=0\end{array}[/latex]

Identify a, b, c.

[latex]a=1, b=2, c=3[/latex]

Substitute values for a, b, c into the quadratic formula.

[latex]\begin{array}{l}x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\\\\x=\frac{-2\pm \sqrt{{{(2)}^{2}}-4(1)(3)}}{2(1)}\end{array}[/latex]

Simplify

[latex] x=\frac{-2\pm \sqrt{-8}}{2}[/latex]

Since the square root of a negative number is not defined for real numbers, there are no real number solutions to this equation.

Summary

The Quadratic Formula is a useful way to solve any quadratic equation. The Quadratic Formula, [latex] x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}[/latex], is found by completing the square of the quadratic equation [latex] [/latex].When you simplify using the quadratic formula and your result is a negative number under a square root, there are no real number solutions to the equation.

Contribute!

Did you have an idea for improving this content? We’d love your input.

Licenses & Attributions

CC licensed content, Original

  • Quadratic Formula Application - Time for an Object to Hit the Ground. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
  • Quadratic Formula Application - Determine the Width of a Border. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.

CC licensed content, Shared previously

  • Ex2: Quadratic Formula - Two Real Irrational Solutions. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
  • Ex: Quadratic Formula - Two Real Rational Solutions. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
Study Guide - The Quadratic Formula (2024)

FAQs

How to do the quadratic formula step by step? ›

Applying the Quadratic Formula

Step 1: Identify a, b, and c in the quadratic equation a x 2 + b x + c = 0 . Step 2: Substitute the values from step 1 into the quadratic formula x = − b ± b 2 − 4 a c 2 a . Step 3: Simplify, making sure to follow the order of operations.

What are the 4 ways to solve a quadratic formula? ›

Answer: There are various methods by which you can solve a quadratic equation such as: factorization, completing the square, quadratic formula, and graphing. These are the four general methods by which we can solve a quadratic equation.

What is the best method for solving quadratics? ›

Factoring is the first of the three methods of solving quadratic equations. It is often the fastest way to solve a quadratic equation, so usually should be attempted before any other method. This method relies on the fact that if two expressions multiply to zero, then at least one of them must be zero.

What math level do you learn quadratic formula? ›

9th-11th Grade Math - Quadratic Functions.

What are 3 common techniques for solving a quadratic equation? ›

Quadratics may have two, one, or zero real solutions.
  • FACTORING. Set the equation equal to zero. ...
  • PRINCIPLE OF SQUARE ROOTS. If the quadratic equation involves a SQUARE and a CONSTANT (no first degree term), position the square on one side and the constant on the other side.
  • COMPLETING THE SQUARE. ...
  • QUADRATIC FORMULA.

How do you get better at quadratic equations? ›

Top 3 Tips to solve Quadratic Equations in Bank Exams

Once it has no remaining terms we can write zero. The second step is to factor the equation so that there is a set each through the middle term break method. The last part is to separate each factor set to zero. and solve putting the equations in this.

How to teach quadratic equations in a fun way? ›

Have students create a video of themselves solving a quadratic equation using one method. You can allow students to choose or you can tell them to use the quadratic equation, factoring, or completing the square. Students must ask like they are the tutor and explain each step.

How can I memorize formulas forever? ›

The foremost thing you can try is writing down the formulas on paper or charts and posting them in your room, for this can help you remember the formulas. This is because you will keep looking at the formulas every day, gradually getting familiar with the list of formulas.

What is the mnemonic device to remember the quadratic formula? ›

The variables can stand for the first letter in the name of a person or animal. For example, for the quadratic formula you could make up the following story: “A sad bison approached an umbrella that could have been happy or sad. Underneath the umbrella was a square bison and four sad alley cats.

What is the easiest way to find a quadratic equation? ›

Factoring is the first of the three methods of solving quadratic equations. It is often the fastest way to solve a quadratic equation, so usually should be attempted before any other method. This method relies on the fact that if two expressions multiply to zero, then at least one of them must be zero.

What is the shortcut formula for the quadratic equation? ›

What is the best method to solve a quadratic equation? The quadratic formula x = − b ± b 2 – 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} x=2a−b±b2–4ac is the most reliable method to solve a quadratic equation.

References

Top Articles
Latest Posts
Article information

Author: Nathanael Baumbach

Last Updated:

Views: 6175

Rating: 4.4 / 5 (75 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Nathanael Baumbach

Birthday: 1998-12-02

Address: Apt. 829 751 Glover View, West Orlando, IN 22436

Phone: +901025288581

Job: Internal IT Coordinator

Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.